如图,二次函数 的图象过点 ,对称轴为直线 .有以下结论:
① ;
② ;
③若 , , , 是抛物线上的两点,当 时, ;
④点 , 是抛物线与 轴的两个交点,若在 轴下方的抛物线上存在一点 ,使得 ,则 的取值范围为 ;
⑤若方程 的两根为 , ,且 ,则 .
其中结论正确的有
A.2个B.3个C.4个D.5个
如图,抛物线 交 轴于点 和 ,那么下列说法正确的是
A. B.
C.对称轴是直线 D.
已知抛物线 与 轴最多有一个交点.以下四个结论:
① ;
②该抛物线的对称轴在 的右侧;
③关于 的方程 无实数根;
④ .
其中,正确结论的个数为
A.1个B.2个C.3个D.4个
平面直角坐标系中,二次函数 的图象如图所示,现给出下列结论:① ;② ;③ ;④ 为实数);⑤ .其中正确结论的个数是
A.2B.3C.4D.5
已知二次函数 的 与 的部分对应值如表:
|
|
0 |
2 |
4 |
|
|
2 |
2 |
|
下列结论错误的是
A.该函数有最大值
B.该函数图象的对称轴为直线
C.当 时,函数值 随 增大而减小
D.方程 有一个根大于3
在同一直角坐标系中,二次函数 与反比例函数 的图象如图所示,若两个函数图象上有三个不同的点 , , , , , ,其中 为常数,令 ,则 的值为
A.1B. C. D.
如图1,抛物线的顶点 的坐标为 ,抛物线与 轴相交于 、 两点,与 轴交于点 .
(1)求抛物线的表达式;
(2)已知点 ,在抛物线的对称轴上是否存在一点 ,使得 最小,如果存在,求出点 的坐标;如果不存在,请说明理由.
(3)如图2,连接 ,若点 是线段 上的一动点,过点 作线段 的垂线,分别与线段 、抛物线相交于点 、 (点 、 都在抛物线对称轴的右侧),当 最大时,求 的面积.
如图,已知直线 分别交 轴、 轴于点 、 ,抛物线过 , 两点,点 是线段 上一动点,过点 作 轴于点 ,交抛物线于点 .
(1)若抛物线的解析式为 ,设其顶点为 ,其对称轴交 于点 .
①求点 、 的坐标;
②是否存在点 ,使四边形 为菱形?并说明理由;
(2)当点 的横坐标为1时,是否存在这样的抛物线,使得以 、 、 为顶点的三角形与 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
如图1,已知抛物线 与 轴交于 , 两点,与 轴交于 点,点 是抛物线上在第一象限内的一个动点,且点 的横坐标为 .
(1)求抛物线的表达式;
(2)设抛物线的对称轴为 , 与 轴的交点为 .在直线 上是否存在点 ,使得四边形 是平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
(3)如图2,连接 , , ,设 的面积为 .
①求 关于 的函数表达式;
②求 点到直线 的距离的最大值,并求出此时点 的坐标.
如图,已知二次函数的图象过点 , ,与 轴交于另一点 ,且对称轴是直线 .
(1)求该二次函数的解析式;
(2)若 是 上的一点,作 交 于 ,当 面积最大时,求 的坐标;
(3) 是 轴上的点,过 作 轴与抛物线交于 .过 作 轴于 ,当以 , , 为顶点的三角形与以 , , 为顶点的三角形相似时,求 点的坐标.
如图示二次函数 的对称轴在 轴的右侧,其图象与 轴交于点 与点 , ,且与 轴交于点 ,小强得到以下结论:① ;② ;③ ;④当 时 ;以上结论中正确结论的序号为 .