某学习小组在研究函数 的图象与性质时,已列表、描点并画出了图象的一部分.
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
3.5 |
4 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
(1)请补全函数图象;
(2)方程 实数根的个数为 ;
(3)观察图象,写出该函数的两条性质.
已知函数 为常数).
(1)该函数的图象与 轴公共点的个数是 .
或2
(2)求证:不论 为何值,该函数的图象的顶点都在函数 的图象上.
(3)当 时,求该函数的图象的顶点纵坐标的取值范围.
如图,已知二次函数 的图象经过点 , ,且与 轴交于点 ,连接 、 、 .
(1)求此二次函数的关系式;
(2)判断 的形状;若 的外接圆记为 ,请直接写出圆心 的坐标;
(3)若将抛物线沿射线 方向平移,平移后点 、 、 的对应点分别记为点 、 、 ,△ 的外接圆记为 ,是否存在某个位置,使 经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.
如图,在平面直角坐标系 ,已知二次函数 的图象过点 ,顶点为 ,连接 、 .
(1)求二次函数的表达式;
(2)若 是 的中点,点 在线段 上,设点 关于直线 的对称点为 ,当 为等边三角形时,求 的长度;
(3)若点 在线段 上, ,点 、 在 的边上,且满足 与 全等,求点 的坐标.
已知二次函数 自变量 的部分取值和对应函数值 如下表:
则在实数范围内能使得 成立的 取值范围是 .
|
|
|
|
0 |
1 |
2 |
3 |
|
|
|
5 |
0 |
|
|
|
0 |
|
、 、 是实数,点 、 、 在二次函数 的图象上,则 、 的大小关系是 (用“ ”或“ ”号填空)
已知二次函数 的图象与 轴的负半轴和正半轴分别交于 、 两点,与 轴交于点 ,它的顶点为 ,直线 与过点 且垂直于 轴的直线交于点 ,且
(1)求 、 两点的坐标;
(2)若 ,求这个二次函数的关系式.
二次函数 的图象如图所示,若线段 在 轴上,且 为 个单位长度,以 为边作等边 ,使点 落在该函数 轴右侧的图象上,则点 的坐标为 .
平面直角坐标系 中,已知抛物线 经过 、 两点,其中 为常数.
(1)求 的值,并用含 的代数式表示 ;
(2)若抛物线 与 轴有公共点,求 的值;
(3)设 、 是抛物线 上的两点,请比较 与0的大小,并说明理由.
如图,在平面直角坐标系 中,抛物线 经过两点 , .过点 作 轴,交抛物线于点 ,交 轴于点 .
(1)求此抛物线对应的函数表达式及点 的坐标;
(2)若抛物线上存在点 ,使得 的面积为 ,求出点 的坐标;
(3)连接 、 、 、 ,在坐标平面内,求使得 与 相似(边 与边 对应)的点 的坐标.
姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内, 值随 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是
A. B. C. D.
如图,在平面直角坐标系中,二次函数 的图象与坐标轴交于 、 、 三点,其中点 的坐标为 ,点 的坐标为 .
(1)求该二次函数的表达式及点 的坐标;
(2)点 的坐标为 ,点 为该二次函数在第一象限内图象上的动点,连接 、 ,以 、 为邻边作平行四边形 ,设平行四边形 的面积为 .
①求 的最大值;
②在点 的运动过程中,当点 落在该二次函数图象上时,请直接写出此时 的值.