如图,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx 经过两点 A ( - 1 , 1 ) , B ( 2 , 2 ) .过点 B 作 BC / / x 轴,交抛物线于点 C ,交 y 轴于点 D .
(1)求此抛物线对应的函数表达式及点 C 的坐标;
(2)若抛物线上存在点 M ,使得 ΔBCM 的面积为 7 2 ,求出点 M 的坐标;
(3)连接 OA 、 OB 、 OC 、 AC ,在坐标平面内,求使得 ΔAOC 与 ΔOBN 相似(边 OA 与边 OB 对应)的点 N 的坐标.
计算:(1)(2)
-+--
计算: