若三个非零实数 x , y , z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 x , y , z 构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若 M ( t , y 1 ) , N ( t + 1 , y 2 ) , R ( t + 3 , y 3 ) 三点均在函数 y = k x ( k 为常数, k ≠ 0 ) 的图象上,且这三点的纵坐标 y 1 , y 2 , y 3 构成“和谐三组数”,求实数 t 的值;
(3)若直线 y = 2 bx + 2 c ( bc ≠ 0 ) 与 x 轴交于点 A ( x 1 , 0 ) ,与抛物线 y = a x 2 + 3 bx + 3 c ( a ≠ 0 ) 交于 B ( x 2 , y 2 ) , C ( x 3 , y 3 ) 两点.
①求证: A , B , C 三点的横坐标 x 1 , x 2 , x 3 构成“和谐三组数”;
②若 a > 2 b > 3 c , x 2 = 1 ,求点 P ( c a , b a ) 与原点 O 的距离 OP 的取值范围.
(本小题满分5分) 已知:如图,在中,D是AC上一点,联结BD,且∠ABD =∠ACB. (1)求证:△ABD∽△ACB; (2)若AD=5,AB= 7,求AC的长.
如,已知抛物线y = ax2+bx+ c经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2), (1)求该抛物线的解析式; (2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式; (3)如图,以点A为圆心,以线段OA为半径画圆交抛物线y = ax2+bx+ c的对称轴于点B,连结AB, 若将抛物线向右平移m(m>0)个单位后,B点的对应点为B′,A点的对应点为A′点,且满足四边形为菱形,平移后的抛物线的对称轴与菱形的对角线BA′交于点E,在x轴上是否存在一点F, 使得以E、F、A′为顶点的三角形与△BAE相似,若存在求出F点坐标,若不存在说明理由.
如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长 .
如图,⊙O是△ABC的外接圆,BC是⊙O的直径,
O
D是劣弧中点,BD交AC于点E.
学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动。你认为这个方法公平吗?请画树状图或列表,并说明理由.