如图,AB是☉O的直径,AM和BN是☉O的两条切线,E是☉O上一点,D是AM上一点,连接DE并延长交BN于点C,且OD∥BE,OF∥BN. (1)求证:DE是☉O的切线.(2)求证:OF =CD.
如图,平面直角坐标系中,三角形的顶点都在网格点上,平移三角形,使点与坐标原点重合,请写出图中点的坐标并画出平移后的三角形
(本小题满分16分,每小题8分) (1)解方程组 (2)解不等式
如图,已知抛物线与直线AB相交于A(﹣3,0),B(0,3)两点. (1)求这条抛物线的解析式; (2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标; (3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E. (1)求证:DC是⊙O的切线; (2)若OE=cm,AC=cm,求DC的长(结果保留根号).
某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元. (1)求第一个月每台彩电销售价格; (2)这批彩电最少有多少台?