如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.
如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC.求证: BE=DF;
如图(14),已知 ,,现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.求C点坐标及直线BC的解析式;一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为的点P.
问题:如图(12),在菱形和菱形中,点在同一条直线上,是线段 的中点,连结.探究与的位置关系及的值.小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:若图(12)中,写出线段与的位置关系及的值,并说明理由;将图(12)中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图13).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.若图(12)中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示).解:(1)线段与的位置关系是 ; .
如图(11),梯形ABCD,AB∥CD ,AB=2cm,且∠OAB=30°,∠OBA=45°,梯形ABCD内部的⊙O分别切四边于E,F,M,N,求出⊙O的半径OM的长度求出梯形ABCD的周长.
如图(10),梯形中,,点是边的中点, 连结交于点,的延长线交的延长线于点.求证:若,,求线段的长