如图, 中, ,顶点 , 都在反比例函数 的图象上,直线 轴,垂足为 ,连结 , ,并延长 交 于点 ,当 时,点 恰为 的中点,若 , .
(1)求反比例函数的解析式;
(2)求 的度数.
如图,在平面直角坐标系中,函数 与 的图象交于 , 两点,过 作 轴的垂线,交函数 的图象于点 ,连接 ,则 的面积为
A.2B.4C.6D.8
如图,四边形 的四个顶点分别在反比例函数 与 的图象上,对角线 轴,且 于点 .已知点 的横坐标为4.
(1)当 , 时.
①若点 的纵坐标为2,求直线 的函数表达式.
②若点 是 的中点,试判断四边形 的形状,并说明理由.
(2)四边形 能否成为正方形?若能,求此时 , 之间的数量关系;若不能,试说明理由.
如图1,在平面直角坐标系 中,已知 , ,顶点 在第一象限, , 在 轴的正半轴上 在 的右侧), , , 与 关于 所在的直线对称.
(1)当 时,求点 的坐标;
(2)若点 和点 在同一个反比例函数的图象上,求 的长;
(3)如图2,将(2)中的四边形 向右平移,记平移后的四边形为 ,过点 的反比例函数 的图象与 的延长线交于点 .问:在平移过程中,是否存在这样的 ,使得以点 , , 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的 的值;若不存在,请说明理由.
如图,已知直线 ,双曲线 ,在 上取一点 , ,过 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交 于点 ,过 作 轴的垂线交双曲线于点 ,过 作 轴的垂线交 于点 ,此时 与 重合,并得到一个正方形 ,若原点 在正方形 的对角线上且分这条对角线为 的两条线段,则 的值为 .
如图,已知一次函数 的图象与反比例函数 的图象交于点 ,且与 轴交于点 ,第一象限内点 在反比例函数 的图象上,且以点 为圆心的圆与 轴, 轴分别相切于点 ,
(1)求 的值;
(2)求一次函数的表达式;
(3)根据图象,当 时,写出 的取值范围.
如图,在平面直角坐标系中, 点的坐标为 , 轴于点 , ,反比例函数 的图象的一支分别交 、 于点 、 .延长 交反比例函数的图象的另一支于点 .已知点 的纵坐标为 .
(1)求反比例函数的解析式;
(2)求直线 的解析式;
(3)求 .
如图,菱形 的一边 在 轴的负半轴上, 是坐标原点, 点坐标为 ,对角线 和 相交于点 且 .若反比例函数 的图象经过点 ,并与 的延长线交于点 ,则 .
如图,曲线 是双曲线 绕原点 逆时针旋转 得到的图形, 是曲线 上任意一点,点 在直线 上,且 ,则 的面积等于
A. B.6C.3D.12
矩形 中, , .分别以 , 所在直线为 轴, 轴,建立如图1所示的平面直角坐标系. 是 边上一个动点(不与 , 重合),过点 的反比例函数 的图象与边 交于点 .
(1)当点 运动到边 的中点时,求点 的坐标;
(2)连接 ,求 的正切值;
(3)如图2,将 沿 折叠,点 恰好落在边 上的点 处,求此时反比例函数的解析式.
如图所示,四边形 是菱形,边 在 轴上,点 ,点 ,双曲线 与直线 交于点 、点 .
(1)求 的值;
(2)求直线 的解析式;
(3)求 的面积.
如图,在平面直角坐标系中,矩形 的顶点 , 的坐标分别为 , .过点 的双曲线 与矩形 的边 交于点 .
(1)填空: , ,点 的坐标为 ;
(2)当 时,经过点 与点 的直线交 轴于点 ,点 是过 , 两点的抛物线 的顶点.
①当点 在双曲线 上时,求证:直线 与双曲线 没有公共点;
②当抛物线 与矩形 有且只有三个公共点,求 的值;
③当点 和点 随着 的变化同时向上运动时,求 的取值范围,并求在运动过程中直线 在四边形 中扫过的面积.
已知点 在双曲线 上且 ,过点 作 轴的垂线,垂足为 .
(1)如图1,当 时, 是 轴上的动点,将点 绕点 顺时针旋转 至点 .
①若 ,直接写出点 的坐标;
②若双曲线 经过点 ,求 的值.
(2)如图2,将图1中的双曲线 沿 轴折叠得到双曲线 ,将线段 绕点 旋转,点 刚好落在双曲线 上的点 处,求 和 的数量关系.
探究函数 与 的相关性质.
(1)小聪同学对函数 进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为 ,它的另一条性质为 ;
|
|
|
|
|
1 |
|
2 |
|
3 |
|
|
|
|
|
|
2 |
|
|
|
|
|
(2)请用配方法求函数 的最小值;
(3)猜想函数 的最小值为 .