如图,在平面直角坐标系中, A 点的坐标为 ( a , 6 ) , AB ⊥ x 轴于点 B , cos ∠ OAB = = 3 5 ,反比例函数 y = k x 的图象的一支分别交 AO 、 AB 于点 C 、 D .延长 AO 交反比例函数的图象的另一支于点 E .已知点 D 的纵坐标为 3 2 .
(1)求反比例函数的解析式;
(2)求直线 EB 的解析式;
(3)求 S ΔOEB .
已知双曲线 与直线 相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线 上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.若点D坐标是(-8,0),求A、B两点坐标及k的值.若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.在(2)的条件下,若P为x轴上一点,是否存在△OMP为等腰三角形?若存在,写出P点坐标;若不存在,说明理由。
等腰△ABC,AB=AC,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE~△CFP;操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.探究1:△BPE与△CFP还相似吗?(只需写出结论)(2分)探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。现有A型、B型、C型三种汽车可供选择。已知每种型号汽车可同时装运2种土特产,且每辆车必须装满。根据下表信息,解答问题。设A型汽车安排辆,B 型汽车安排辆,求与之间的函数关系式。如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案。为节约运费,应采用(2)中哪种方案?并求出最少运费。
如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交轴、轴于点C、D,且S△PBD=4,.求点D的坐标;求一次函数与反比例函数解析式;根据图象写出一次函数的值大于反比例函数的值的的取值范围.
某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.甲、乙工程队每天各能铺设多少米?如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.