(贵港)(1)计算:;(2)解不等式组,并在数轴上表示不等式组的解集.
如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.
直线y=﹣3x+3与x轴交于点A,与y轴交于点B,抛物线y=a(x﹣2)2+k经过点A、B,与x轴的另一交点为C.(1)求a,k的值;(2)若点M、N分别为抛物线及其对称轴上的点,且以A,C,M,N为顶点的四边形为平行四边形,请直接写出点M的坐标.
如图,AB是⊙O的直径,点C在⊙O上,CE^AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD. (1)求证:BD是⊙O的切线; (2)若AE=9,CE=12,求BF的长.
如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,求这个车轮的外圆半径长.
抛物线与x轴分别交于点A (-1,0)和点B,与y轴的交点C坐标为(0,-3).(1)求抛物线的表达式;(2)点D为抛物线对称轴上的一个动点,若DA+DC的值最小,求点D的坐标.