如图,四边形 ABCD 的四个顶点分别在反比例函数 y = m x 与 y = n x ( x > 0 , 0 < m < n ) 的图象上,对角线 BD / / y 轴,且 BD ⊥ AC 于点 P .已知点 B 的横坐标为4.
(1)当 m = 4 , n = 20 时.
①若点 P 的纵坐标为2,求直线 AB 的函数表达式.
②若点 P 是 BD 的中点,试判断四边形 ABCD 的形状,并说明理由.
(2)四边形 ABCD 能否成为正方形?若能,求此时 m , n 之间的数量关系;若不能,试说明理由.
如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,联结EF、EC、BF、CF.四边形AECD的形状是;若CD=2,求CF的长.
小明从地出发向地行走,同时晓阳从地出发向地行走,如图所示,相交于点M的两条线段分别表示小明、晓阳离A地的距离(千米)与已用时间(分钟)之间的关系,小明与晓阳相遇时,晓阳出发的时间是;求小明与晓阳的速度。
已知一次函数的图像经过点A(1,0)和B(),且点B在反比例函数的图像上.求一次函数的解析式;若点M是轴上一点,且满足△ABM是直角三角形,请直接写出点M的坐标.
如图,∠ACB=∠CDE=90°,B是CE的中点,∠DCE=30°,AC=CD.求证:AB∥DE.
在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图28-1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.我们先从特殊的倍角三角形入手研究.请你结合图形填空:如图28-4,对于一般的倍角△ABC,若∠CAB=2∠CBA ,∠CAB、∠CBA、∠C的对边分别记为a、b、c,a、b、c三边有什么关系呢?请你作出猜测,并结合图28-4给出的辅助线提示加以证明.