如图,四边形 ABCD 的四个顶点分别在反比例函数 y = m x 与 y = n x ( x > 0 , 0 < m < n ) 的图象上,对角线 BD / / y 轴,且 BD ⊥ AC 于点 P .已知点 B 的横坐标为4.
(1)当 m = 4 , n = 20 时.
①若点 P 的纵坐标为2,求直线 AB 的函数表达式.
②若点 P 是 BD 的中点,试判断四边形 ABCD 的形状,并说明理由.
(2)四边形 ABCD 能否成为正方形?若能,求此时 m , n 之间的数量关系;若不能,试说明理由.
“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题: ⑴这次共抽查了个家长; ⑵请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数); ⑶已知该校共有1200名学生,持“赞成”态度的学生估计约有人.
如图,在ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.
(1)解方程:(2)解不等式组:
(1)计算:(2)化简.
如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n的图象经过A,C两点. (1)求此抛物线的函数表达式; (2)求证:∠BEF=∠AOE; (3)当△EOF为等腰三角形时,求此时点E的坐标; (4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的()倍.若存在,请直接写出点P坐标;若不存在,请说明理由.