如图,点 在反比例函数 的图象上,点 在 轴的正半轴上,点 在 轴的负半轴上,且 .点 是线段 上一动点,过点 和 分别作 轴的垂线,垂足为点 和 ,连接 、 .当 时, 的取值范围是 .
已知,如图,一次函数 、 为常数, 的图象与 轴、 轴分别交于 、 两点,且与反比例函数 为常数且 的图象在第二象限交于点 . 轴,垂足为 ,若 .
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式: 的解集.
如图,在平面直角坐标系 中,一次函数的图象与反比例函数 的图象在第二象限交于 , 两点.
(1)当 时,求一次函数的解析式;
(2)若点 在 轴上,满足 ,且 ,求反比例函数的解析式.
平行四边形ABCD的两个顶点A、C在反比例函数 图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点
(1)已知点A的坐标是(2,3),求k的值及C点的坐标;
(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.
在平面直角坐标系 中,已知 , , 三点,其中 ,函数 的图象分别与线段 , 交于点 , .若 ,则 的值为 .
若抛物线 (a,b,c是常数, )与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线 与抛物线 具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数 的图象上,它的“带线”l的解析式为 ,求此“路线”L的解析式;
(3)当常数k满足 时,求抛物线 的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
已知一次函数 与反比例函数 的图象交于 、 两点.
(1)求一次函数和反比例函数的表达式;
(2)求 的面积;
(3)点 在 轴上,当 为等腰三角形时,直接写出点 的坐标.
如图,一次函数 (k、b为常数,且 )和反比例函数 的图象交于A、B两点,利用函数图象直接写出不等式 的解集是 .
如图,一次函数 y= k 1 x+ b的图象与反比例函数 y= 的图象相交于 A、 B两点,其中点 A的坐标为(﹣1,4),点 B的坐标为(4, n).
(1)根据图象,直接写出满足 k 1 x+ b> 的 x的取值范围;
(2)求这两个函数的表达式;
(3)点 P在线段 AB上,且 S △ AOP: S △ BOP=1:2,求点 P的坐标.
如图,反比例函数 与一次函数y=x+4的图象交于A、B两点的横坐标分别为﹣3,﹣1.则关于x的不等式 的解集为( )
A.x<﹣3B.﹣3<x<﹣1
C.﹣1<x<0D.x<﹣3或﹣1<x<0
如图,已知双曲线 与直线 相交于A,B两点,过点A作x轴的垂线与过点B作y轴的垂线相交于点C,若△ABC的面积为8,则k的值为 .
如图,一次函数y1=x+1的图象与反比例函数 的图象交于点M,作 轴,N为垂足,且 。
(1)在第一象限内,当x取何值时, ?(根据图象直接写出结果)
(2)求反比例函数的表达式.
如图,一次函数 的图象与反比例函数 的图象交于点 、 ,与 轴交于点 ,若 ,且 .
(1)求反比例函数与一次函数的表达式;
(2)请直接写出不等式 的解集.