初中数学

如图,已知一次函数 y = - 4 3 x + 4 的图象是直线 l ,设直线 l 分别与 y 轴、 x 轴交于点 A B

(1)求线段 AB 的长度;

(2)设点 M 在射线 AB 上,将点 M 绕点 A 按逆时针方向旋转 90 ° 到点 N ,以点 N 为圆心, NA 的长为半径作 N

①当 N x 轴相切时,求点 M 的坐标;

②在①的条件下,设直线 AN x 轴交于点 C ,与 N 的另一个交点为 D ,连接 MD x 轴于点 E ,直线 m 过点 N 分别与 y 轴、直线 l 交于点 P Q ,当 ΔAPQ ΔCDE 相似时,求点 P 的坐标.

来源:2017年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,以菱形 ABCD 对角线交点为坐标原点,建立平面直角坐标系, A B 两点的坐标分别为 ( 2 5 0 ) ( 0 , 5 ) ,直线 DE DC AC E ,动点 P 从点 A 出发,以每秒2个单位的速度沿着 A D C 的路线向终点 C 匀速运动,设 ΔPDE 的面积为 S ( S 0 ) ,点 P 的运动时间为 t 秒.

(1)求直线 DE 的解析式;

(2)求 S t 之间的函数关系式,并写出自变量 t 的取值范围;

(3)当 t 为何值时, EPD + DCB = 90 ° ?并求出此时直线 BP 与直线 AC 所夹锐角的正切值.

来源:2016年四川省绵阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图1,在直角坐标系 xoy 中,直线 l : y = kx + b x 轴, y 轴于点 E F ,点 B 的坐标是 ( 2 , 2 ) ,过点 B 分别作 x 轴、 y 轴的垂线,垂足为 A C ,点 D 是线段 CO 上的动点,以 BD 为对称轴,作与 ΔBCD 成轴对称的△ BC ' D

(1)当 CBD = 15 ° 时,求点 C ' 的坐标.

(2)当图1中的直线 l 经过点 A ,且 k = 3 3 时(如图 2 ) ,求点 D C O 的运动过程中,线段 BC ' 扫过的图形与 ΔOAF 重叠部分的面积.

(3)当图1中的直线 l 经过点 D C ' 时(如图 3 ) ,以 DE 为对称轴,作与 ΔDOE 成轴对称的△ DO ' E ,连接 O ' C O ' O ,问是否存在点 D ,使得△ DO ' E 与△ CO ' O 相似?若存在,求出 k b 的值;若不存在,请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图:一次函数 y = - 3 4 x + 3 的图象与坐标轴交于 A B 两点,点 P 是函数 y = - 3 4 x + 3 ( 0 < x < 4 ) 图象上任意一点,过点 P PM y 轴于点 M ,连接 OP

(1)当 AP 为何值时, ΔOPM 的面积最大?并求出最大值;

(2)当 ΔBOP 为等腰三角形时,试确定点 P 的坐标.

来源:2018年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系中,过点 A - 3 , 0 )的两条直线分别交 y轴于 BC两点,且 BC两点的纵坐标分别是一元二次方程 x 2﹣2 x﹣3=0的两个根

(1)求线段 BC的长度;

(2)试问:直线 AC与直线 AB是否垂直?请说明理由;

(3)若点 D在直线 AC上,且 DBDC,求点 D的坐标;

(4)在(3)的条件下,直线 BD上是否存在点 P,使以 ABP三点为顶点的三角形是等腰三角形?若存在,请直接写出 P点的坐标;若不存在,请说明理由.

来源:2016年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

【操作发现】在计算器上输入一个正数,不断地按“ (      ) ”键求算术平方根,运算结果越来越接近1或都等于1.

【提出问题】输入一个实数,不断地进行“乘常数 k ,再加上常数 b ”的运算,有什么规律?

【分析问题】我们可用框图表示这种运算过程(如图 a )

也可用图象描述:如图1,在 x 轴上表示出 x 1 ,先在直线 y = kx + b 上确定点 ( x 1 y 1 ) ,再在直线 y = x 上确定纵坐标为 y 1 的点 ( x 2 y 1 ) ,然后在 x 轴上确定对应的数 x 2 ,以此类推.

【解决问题】研究输入实数 x 1 时,随着运算次数 n 的不断增加,运算结果 x n ,怎样变化.

(1)若 k = 2 b = 4 ,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;

(2)若 k > 1 ,又得到什么结论?请说明理由;

(3)①若 k = 2 3 b = 2 ,已在 x 轴上表示出 x 1 (如图2所示),请在 x 轴上表示 x 2 x 3 x 4 ,并写出研究结论;

②若输入实数 x 1 时,运算结果 x n 互不相等,且越来越接近常数 m ,直接写出 k 的取值范围及 m 的值(用含 k b 的代数式表示)

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,矩形 AOCB 的顶点 A C 分别位于 x 轴和 y 轴的正半轴上,线段 OA OC 的长度满足方程 | x 15 | + y 13 = 0 ( OA > OC ) ,直线 y = kx + b 分别与 x 轴、 y 轴交于 M N 两点,将 ΔBCN 沿直线 BN 折叠,点 C 恰好落在直线 MN 上的点 D 处,且 tan CBD = 3 4

(1)求点 B 的坐标;

(2)求直线 BN 的解析式;

(3)将直线 BN 以每秒1个单位长度的速度沿 y 轴向下平移,求直线 BN 扫过矩形 AOCB 的面积 S 关于运动的时间 t ( 0 < t 13 ) 的函数关系式.

来源:2017年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 2 3 x + 4 的图象与 x 轴和 y 轴分别相交于 A B 两点.动点 P 从点 A 出发,在线段 AO 上以每秒3个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动,点 A 关于点 P 的对称点为点 Q ,以线段 PQ 为边向上作正方形 PQMN .设运动时间为 t 秒.

(1)当 t = 1 3 秒时,点 Q 的坐标是  

(2)在运动过程中,设正方形 PQMN ΔAOB 重叠部分的面积为 S ,求 S t 的函数表达式;

(3)若正方形 PQMN 对角线的交点为 T ,请直接写出在运动过程中 OT + PT 的最小值.

来源:2018年江苏省淮安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点Bx轴的正半轴上. OAB 90 ° OA AB OBOC的长分别是一元二次方程 x 2 11 x + 30 0 的两个根 OB OC

(1)求点A和点B的坐标.

(2)点P是线段OB上的一个动点(点P不与点OB重合),过点P的直线ly轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 t 4 时,直线l恰好过点C.当 0 t 3 时,求m关于t的函数关系式.

(3)当 m 3 . 5 时,请直接写出点P的坐标.

来源:2016年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图在平面直角坐标系中,直线 y = - 3 4 x + 3 x 轴、 y 轴分别交于 A B 两点,点 P Q 同时从点 A 出发,运动时间为 t 秒.其中点 P 沿射线 AB 运动,速度为每秒4个单位长度,点 Q 沿射线 AO 运动,速度为每秒5个单位长度.以点 Q 为圆心, PQ 长为半径作 Q

(1)求证:直线 AB Q 的切线;

(2)过点 A 左侧 x 轴上的任意一点 C ( m , 0 ) ,作直线 AB 的垂线 CM ,垂足为 M .若 CM Q 相切于点 D ,求 m t 的函数关系式(不需写出自变量的取值范围);

(3)在(2)的条件下,是否存在点 C ,直线 AB CM y 轴与 Q 同时相切?若存在,请直接写出此时点 C 的坐标;若不存在,请说明理由.

来源:2017年湖北省荆州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

【定义】如图1, A B 为直线 l 同侧的两点,过点 A 作直线 l 的对称点 A ' ,连接 A ' B 交直线 l 于点 P ,连接 AP ,则称点 P 为点 A B 关于直线 l 的“等角点”.

【运用】如图2,在平面直角坐标系 xOy 中,已知 A ( 2 , 3 ) B ( 2 , 3 ) 两点.

(1) C ( 4 , 3 2 ) D ( 4 , 2 2 ) E ( 4 , 1 2 ) 三点中,点  C  是点 A B 关于直线 x = 4 的等角点;

(2)若直线 l 垂直于 x 轴,点 P ( m , n ) 是点 A B 关于直线 l 的等角点,其中 m > 2 APB = α ,求证: tan α 2 = n 2

(3)若点 P 是点 A B 关于直线 y = ax + b ( a 0 ) 的等角点,且点 P 位于直线 AB 的右下方,当 APB = 60 ° 时,求 b 的取值范围(直接写出结果).

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知,动点的图象上运动(不与重合),连接.过点,交轴于点,连接

(1)求线段长度的取值范围;

(2)试问:点运动的过程中,是否为定值?如果是,求出该值;如果不是,请说明理由.

(3)当为等腰三角形时,求点的坐标.

来源:2019年四川省攀枝花市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图1,已知 ABCD AB / / x 轴, AB = 6 ,点 A 的坐标为 ( 1 , 4 ) ,点 D 的坐标为 ( 3 , 4 ) ,点 B 在第四象限,点 P ABCD 边上的一个动点.

(1)若点 P 在边 BC 上, PD = CD ,求点 P 的坐标.

(2)若点 P 在边 AB AD 上,点 P 关于坐标轴对称的点 Q 落在直线 y = x 1 上,求点 P 的坐标.

(3)若点 P 在边 AB AD CD 上,点 G AD y 轴的交点,如图2,过点 P y 轴的平行线 PM ,过点 G x 轴的平行线 GM ,它们相交于点 M ,将 ΔPGM 沿直线 PG 翻折,当点 M 的对应点落在坐标轴上时,求点 P 的坐标.(直接写出答案)

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知:在平面直角坐标系中,点 O 为坐标原点,点 A x 轴的负半轴上,直线 y = 3 x + 7 2 3 x 轴、 y 轴分别交于 B C 两点,四边形 ABCD 为菱形.

(1)如图1,求点 A 的坐标;

(2)如图2,连接 AC ,点 P ΔACD 内一点,连接 AP BP BP AC 交于点 G ,且 APB = 60 ° ,点 E 在线段 AP 上,点 F 在线段 BP 上,且 BF = AE ,连接 AF EF ,若 AFE = 30 ° ,求 A F 2 + E F 2 的值;

(3)如图3,在(2)的条件下,当 PE = AE 时,求点 P 的坐标.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线分别交轴、轴于点,正方形的顶点在第二象限内,中点,于点,连结.动点上从点向终点匀速运动,同时,动点在直线上从某一点向终点匀速运动,它们同时到达终点.

(1)求点的坐标和的长.

(2)设点,当时,求点的坐标.

(3)根据(2)的条件,当点运动到中点时,点恰好与点重合.

①延长交直线于点,当点在线段上时,设,求关于的函数表达式.

②当的一边平行时,求所有满足条件的的长.

来源:2019年浙江省温州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学一次函数综合题试题