【定义】如图1, A , B 为直线 l 同侧的两点,过点 A 作直线 l 的对称点 A ' ,连接 A ' B 交直线 l 于点 P ,连接 AP ,则称点 P 为点 A , B 关于直线 l 的“等角点”.
【运用】如图2,在平面直角坐标系 xOy 中,已知 A ( 2 , 3 ) , B ( − 2 , − 3 ) 两点.
(1) C ( 4 , 3 2 ) , D ( 4 , 2 2 ) , E ( 4 , 1 2 ) 三点中,点 C 是点 A , B 关于直线 x = 4 的等角点;
(2)若直线 l 垂直于 x 轴,点 P ( m , n ) 是点 A , B 关于直线 l 的等角点,其中 m > 2 , ∠ APB = α ,求证: tan α 2 = n 2 ;
(3)若点 P 是点 A , B 关于直线 y = ax + b ( a ≠ 0 ) 的等角点,且点 P 位于直线 AB 的右下方,当 ∠ APB = 60 ° 时,求 b 的取值范围(直接写出结果).
(.天津市,第20题,8分) (本小题8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②. 请根据相关信息,解答下列问题:(Ⅰ)该商场服装部营业员人数为_________图①中m的值为_________;(Ⅱ)求统计的这组销售额数据的平均数、众数和中位数.
(.重庆市B卷,第22题,10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为
(1)七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.
(.重庆市A卷,第22题,10分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润(万元)的多少分为以下四个类型:A类(),B类(),C类(),D类(),该镇政府对辖区对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题: (1)该镇本次统计的小微企业总个数是 ,扇形统计图中B类所对应扇形圆心角的度数为 度,请补全条形统计图; (2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会,计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中2个来自高新区,另2个来自开发区,请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率。
(.宁夏,第19题,6分)为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:级:优秀;级:良好;级:及格;级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是级的概率是多少?
(.河南省,第18题,9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图. 根据以上信息解答下列问题: (1)这次接受调查的市民总人数是 ; (2)扇形统计图中,“电视”所对应的圆心角的度数是 ; (3)请补全条形统计图; (4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.