如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上. ∠ OAB = 90 ° 且 OA = AB ,OB,OC的长分别是一元二次方程 x 2 ﹣ 11 x + 30 = 0 的两个根 ( OB > OC ) .
(1)求点A和点B的坐标.
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 t = 4 时,直线l恰好过点C.当 0 < t < 3 时,求m关于t的函数关系式.
(3)当 m = 3 . 5 时,请直接写出点P的坐标.
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3)(1)求出与的函数关系式,并写出自变量的取值范围;(2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.
若关于的方程 有实数根. (1)求的取值范围;(2)当取得最大整数值时,求此时方程的根.
如图,在四边形ABCD中,∥且,E是BC上一点,且.求证:.
已知抛物线经过(0,-1),(3,2)两点.求它的解析式及顶点坐标.
如图,在△和△中,,为线段上一点,且.求证:.