如图,矩形 AOCB 的顶点 A 、 C 分别位于 x 轴和 y 轴的正半轴上,线段 OA 、 OC 的长度满足方程 | x − 15 | + y − 13 = 0 ( OA > OC ) ,直线 y = kx + b 分别与 x 轴、 y 轴交于 M 、 N 两点,将 ΔBCN 沿直线 BN 折叠,点 C 恰好落在直线 MN 上的点 D 处,且 tan ∠ CBD = 3 4
(1)求点 B 的坐标;
(2)求直线 BN 的解析式;
(3)将直线 BN 以每秒1个单位长度的速度沿 y 轴向下平移,求直线 BN 扫过矩形 AOCB 的面积 S 关于运动的时间 t ( 0 < t ⩽ 13 ) 的函数关系式.
在中,,点是直线上一点(不与重合),以为一边在的右侧作,使,连接.(1)如图1,当点在线段上,如果,则 度;(2)设,.①如图2,当点在线段上移动,则之间有怎样的数量关系?请说明理由;②当点在直线上移动,则之间有怎样的数量关系?请直接写出你的结论.
(本题满分6分)如图所示,点P是等边△ABC外一点,∠APC =60°, PA、BC交于点D,求证:
如图所示,在中,分别是和上的一点,与交于点,给出下列四个条件:①;②;③;④.(1)上述四个条件中,哪两个条件可以判定是等腰三角形(用序号写出所有的情形);(2)选择(1)小题中的一种情形,证明是等腰三角形.
如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28,AB=20cm,AC=8cm,求DE的长.
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证: Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.