如图,在平面直角坐标系中,一次函数 y = − 2 3 x + 4 的图象与 x 轴和 y 轴分别相交于 A 、 B 两点.动点 P 从点 A 出发,在线段 AO 上以每秒3个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动,点 A 关于点 P 的对称点为点 Q ,以线段 PQ 为边向上作正方形 PQMN .设运动时间为 t 秒.
(1)当 t = 1 3 秒时,点 Q 的坐标是 ;
(2)在运动过程中,设正方形 PQMN 与 ΔAOB 重叠部分的面积为 S ,求 S 与 t 的函数表达式;
(3)若正方形 PQMN 对角线的交点为 T ,请直接写出在运动过程中 OT + PT 的最小值.
如图,在平行四边形ABCD中,∠ABC、∠BCD的平分线相交于点O,BO延长线交CD延长线于点E, 求证:OB=OE
如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F. (1)求证:△ABE≌△DFE; (2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.
如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;连结AE、CF,得四边形AFCE,试判断四边形AFCE是下列图形中的哪一种?①平行四边形;②菱形;③矩形;请证明你的结论.
如图,正方形ABCD中,E、F分别为CD、DA的中点,BE、CF交于P,求证AP=AB。
如图,在等腰Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H。判断四边形AHBG的形状。