初中数学

在平面直角坐标系中,点 A ( 3 , 0 ) B ( 0 , 4 ) .以 AB 为一边在第一象限作正方形 ABCD ,则对角线 BD 所在直线的解析式为 (    )

A.

y = 1 7 x + 4

B.

y = 1 4 x + 4

C.

y = 1 2 x + 4

D.

y = 4

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,边 BC x 轴上,顶点 A B 的坐标分别为 ( - 2 , 6 ) ( 7 , 0 ) .将正方形 OCDE 沿 x 轴向右平移,当点 E 落在 AB 边上时,点 D 的坐标为 (    )

A. ( 3 2 2 ) B. ( 2 , 2 ) C. ( 11 4 2 ) D. ( 4 , 2 )

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知平面直角坐标系中,点 P ( x 0 y 0 ) 和直线 Ax + By + C = 0 (其中 A B 不全为 0 ) ,则点 P 到直线 Ax + By + C = 0 的距离 d 可用公式 d = | A x 0 + B y 0 + C | A 2 + B 2 来计算.

例如:求点 P ( 1 , 2 ) 到直线 y = 2 x + 1 的距离,因为直线 y = 2 x + 1 可化为 2 x - y + 1 = 0 ,其中 A = 2 B = - 1 C = 1 ,所以点 P ( 1 , 2 ) 到直线 y = 2 x + 1 的距离为: d = | A x 0 + B y 0 + C | A 2 + B 2 = | 2 × 1 + ( - 1 ) × 2 + 1 | 2 2 + ( - 1 ) 2 = 1 5 = 5 5

根据以上材料,解答下列问题:

(1)求点 M ( 0 , 3 ) 到直线 y = 3 x + 9 的距离;

(2)在(1)的条件下, M 的半径 r = 4 ,判断 M 与直线 y = 3 x + 9 的位置关系,若相交,设其弦长为 n ,求 n 的值;若不相交,说明理由.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,点 A B 的坐标分别为 A ( 2 , 0 ) B ( 0 , 2 ) ,点 C 为坐标平面内一点, BC = 1 ,点 M 为线段 AC 的中点,连接 OM ,则 OM 的最大值为 (    )

A.

2 + 1

B.

2 + 1 2

C.

2 2 + 1

D.

2 2 - 1 2

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

定义:在平面直角坐标系中,一个图形先向右平移 a 个单位,再绕原点按顺时针方向旋转 θ 角度,这样的图形运动叫作图形的 γ ( a , θ ) 变换.

如图,等边 ΔABC 的边长为1,点 A 在第一象限,点 B 与原点 O 重合,点 C x 轴的正半轴上.△ A 1 B 1 C 1 就是 ΔABC γ ( 1 , 180 ° ) 变换后所得的图形.

ΔABC γ ( 1 , 180 ° ) 变换后得△ A 1 B 1 C 1 ,△ A 1 B 1 C 1 γ ( 2 , 180 ° ) 变换后得△ A 2 B 2 C 2 ,△ A 2 B 2 C 2 γ ( 3 , 180 ° ) 变换后得△ A 3 B 3 C 3 ,依此类推

A n 1 B n 1 C n 1 γ ( n , 180 ° ) 变换后得△ A n B n C n ,则点 A 1 的坐标是  ,点 A 2018 的坐标是  

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,点 A ( 1 , 1 ) B ( 3 , 3 ) 是第一象限角平分线上的两点,点 C 的纵坐标为1,且 CA = CB ,在 y 轴上取一点 D ,连接 AC BC AD BD ,使得四边形 ACBD 的周长最小,这个最小周长的值为     

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, OAB = 90 ° B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O B 重合).

(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;

(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t

①如图②,若折叠后△ O ' PQ ΔOAB 重叠部分为四边形, O ' P O ' Q 分别与边 AB 相交于点 C D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;

②若折叠后△ O ' PQ ΔOAB 重叠部分的面积为 S ,当 1 t 3 时,求 S 的取值范围(直接写出结果即可).

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 A B 在反比例函数 y = k x ( x > 0 ) 的图象上,延长 AB x 轴于 C 点,若 ΔAOC 的面积是12,且点 B AC 的中点,则 k =   

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

小明为画一个零件的轴截面,以该轴截面底边所在的直线为 x 轴,对称轴为 y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取 1 mm ,则图中转折点 P 的坐标表示正确的是 (    )

A. ( 5 , 30 ) B. ( 8 , 10 ) C. ( 9 , 10 ) D. ( 10 , 10 )

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,四边形 OABC 是矩形,点 A 的坐标为 ( 8 , 0 ) ,点 C 的坐标为 ( 0 , 4 ) ,把矩形 OABC 沿 OB 折叠,点 C 落在点 D 处,则点 D 的坐标为  

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,有一只用七巧板拼成的"猫",三角形①的边 BC 及四边形②的边 CD 都在 x 轴上,"猫"耳尖 E y 轴上.若"猫"尾巴尖 A 的横坐标是1,则"猫"爪尖 F 的坐标是   

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,以点 A ( 3 , 1 ) 为端点的四条射线 AB AC AD AE 分别过点 B ( 1 , 1 ) ,点 C ( 1 , 3 ) ,点 D ( 4 , 4 ) ,点 E ( 5 , 2 ) ,则 BAC    DAE (填" > "、" = "、" < "中的一个).

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,四边形 OBCD 是正方形, O D 两点的坐标分别是 ( 0 , 0 ) ( 0 , 6 ) ,点 C 在第一象限,则点 C 的坐标是 (    )

A. ( 6 , 3 ) B. ( 3 , 6 ) C. ( 0 , 6 ) D. ( 6 , 6 )

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,菱形 ABCD 的顶点 A B C 在坐标轴上,若点 B 的坐标为 ( 1 , 0 ) BCD = 120 ° ,则点 D 的坐标为 (    )

A.

( 2 , 2 )

B.

( 3 2 )

C.

( 3 , 3 )

D.

( 2 , 3 )

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学平面直角坐标系试题