初中数学

如图1,平面直角坐标系 xOy 中,等腰 ΔABC 的底边 BC x 轴上, BC = 8 ,顶点 A y 的正半轴上, OA = 2 ,一动点 E ( 3 , 0 ) 出发,以每秒1个单位的速度沿 CB 向左运动,到达 OB 的中点停止.另一动点 F 从点 C 出发,以相同的速度沿 CB 向左运动,到达点 O 停止.已知点 E F 同时出发,以 EF 为边作正方形 EFGH ,使正方形 EFGH ΔABC BC 的同侧,设运动的时间为 t ( t 0 )

(1)当点 H 落在 AC 边上时,求 t 的值;

(2)设正方形 EFGH ΔABC 重叠面积为 S ,请问是否存在 t 值,使得 S = 91 36 ?若存在,求出 t 值;若不存在,请说明理由;

(3)如图2,取 AC 的中点 D ,连结 OD ,当点 E F 开始运动时,点 M 从点 O 出发,以每秒 2 5 个单位的速度沿 OD - DC - CD - DO 运动,到达点 O 停止运动.请问在点 E 的整个运动过程中,点 M 可能在正方形 EFGH 内(含边界)吗?如果可能,求出点 M 在正方形 EFGH 内(含边界)的时长;若不可能,请说明理由.

来源:2020年湖南省衡阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图所示,拋物线轴交于两点,与轴交于点,且点的坐标为,点的坐标为,对称轴为直线.点是抛物线上一个动点,设点的横坐标为,连接

(1)求抛物线的函数表达式;

(2)当的面积等于的面积的时,求的值;

(3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年甘肃省天水市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,正方形的四个顶点坐标分别为

(1)填空:正方形的面积为  ;当双曲线与正方形有四个交点时,的取值范围是:  

(2)已知抛物线顶点在边上,与边分别相交于点,过点的双曲线与边交于点

①点是平面内一动点,在抛物线的运动过程中,点运动,分别求运动过程中点在最高位置和最低位置时的坐标;

②当点在点下方,,点不与两点重合时,求的值;

③求证:抛物线与直线的交点始终位于轴下方.

来源:2019年湖北省宜昌市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边.若不改变矩形的形状和大小,当矩形顶点轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.

(1)当时,求点的坐标;

(2)设的中点为,连接,当四边形的面积为时,求的长;

(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.

来源:2019年湖南省益阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

特例感知

(1)如图1,对于抛物线,下列结论正确的序号是  

①抛物线都经过点

②抛物线的对称轴由抛物线的对称轴依次向左平移个单位得到;

③抛物线与直线的交点中,相邻两点之间的距离相等.

形成概念

(2)把满足为正整数)的抛物线称为“系列平移抛物线”.

知识应用

在(2)中,如图2.

①“系列平移抛物线”的顶点依次为,用含的代数式表示顶点的坐标,并写出该顶点纵坐标与横坐标之间的关系式;

②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:,其横坐标分别为为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.

③在②中,直线分别交“系列平移抛物线”于点,连接,判断是否平行?并说明理由.

来源:2019年江西省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,点 P 的坐标为 ( x 1 y 1 ) ,点 Q 的坐标为 ( x 2 y 2 ) ,且 x 1 x 2 y 1 y 2 ,若 P Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点 P Q 的"相关矩形",如图为点 P Q 的"相关矩形"示意图.

(1)已知点 A 的坐标为 ( 1 , 0 )

①若点 B 的坐标为 ( 3 , 1 ) ,求点 A B 的"相关矩形"的面积;

②点 C 在直线 x = 3 上,若点 A C 的"相关矩形"为正方形,求直线 AC 的表达式;

(2) O 的半径为 2 ,点 M 的坐标为 ( m , 3 ) ,若在 O 上存在一点 N ,使得点 M N 的"相关矩形"为正方形,求 m 的取值范围.

来源:2016年北京市中考数学试卷
  • 更新:2020-12-15
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,的半径为1,外两点,

给出如下定义:平移线段,得到的弦分别为点的对应点),线段长度的最小值称为线段的“平移距离”.

(1)如图,平移线段得到的长度为1的弦,则这两条弦的位置关系是  ;在点中,连接点与点  的线段的长度等于线段的“平移距离”;

(2)若点都在直线上,记线段的“平移距离”为,求的最小值;

(3)若点的坐标为,记线段的“平移距离”为,直接写出的取值范围.

来源:2020年北京市中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, M 经过原点 O ,分别交 x 轴、 y 轴于点 A ( 2 , 0 ) B ( 0 , 8 ) ,连结 AB .直线 CM 分别交 M 于点 D E (点 D 在左侧),交 x 轴于点 C ( 17 , 0 ) ,连结 AE

(1)求 M 的半径和直线 CM 的函数表达式;

(2)求点 D E 的坐标;

(3)点 P 在线段 AC 上,连结 PE .当 AEP ΔOBD 的一个内角相等时,求所有满足条件的 OP 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 A 的坐标为 ( - 73 0 ) ,点 B 在直线 l : y = 3 8 x 上,过点 B AB 的垂线,过原点 O 作直线 l 的垂线,两垂线相交于点 C

(1)如图,点 B C 分别在第三、二象限内, BC AO 相交于点 D

①若 BA = BO ,求证: CD = CO

②若 CBO = 45 ° ,求四边形 ABOC 的面积.

(2)是否存在点 B ,使得以 A B C 为顶点的三角形与 ΔBCO 相似?若存在,求 OB 的长;若不存在,请说明理由.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ΔAOB 的边 OA x 轴上, OA = AB ,且线段 OA 的长是方程 x 2 - 4 x - 5 = 0 的根,过点 B BE x 轴,垂足为 E tan BAE = 4 3 ,动点 M 以每秒1个单位长度的速度,从点 A 出发,沿线段 AB 向点 B 运动,到达点 B 停止.过点 M x 轴的垂线,垂足为 D ,以 MD 为边作正方形 MDCF ,点 C 在线段 OA 上,设正方形 MDCF ΔAOB 重叠部分的面积为 S ,点 M 的运动时间为 t ( t > 0 ) 秒.

(1)求点 B 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量 t 的取值范围;

(3)当点 F 落在线段 OB 上时,坐标平面内是否存在一点 P ,使以 M A O P 为顶点的四边形是平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中, O 的半径为1.对于点 A 和线段 BC ,给出如下定义:若将线段 BC 绕点 A 旋转可以得到 O 的弦 B ' C ' ( B ' C ' 分别是 B C 的对应点),则称线段 BC O 的以点 A 为中心的“关联线段”.

(1)如图,点 A B 1 C 1 B 2 C 2 B 3 C 3 的横、纵坐标都是整数.在线段 B 1 C 1 B 2 C 2 B 3 C 3 中, O 的以点 A 为中心的“关联线段”是   B 2 C 2  

(2) ΔABC 是边长为1的等边三角形,点 A ( 0 , t ) ,其中 t 0 .若 BC O 的以点 A 为中心的“关联线段”,求 t 的值;

(3)在 ΔABC 中, AB = 1 AC = 2 .若 BC O 的以点 A 为中心的“关联线段”,直接写出 OA 的最小值和最大值,以及相应的 BC 长.

来源:2021年北京市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

初中数学平面直角坐标系试题