定义:在平面直角坐标系中,一个图形先向右平移 a 个单位,再绕原点按顺时针方向旋转 θ 角度,这样的图形运动叫作图形的 γ ( a , θ ) 变换.
如图,等边 ΔABC 的边长为1,点 A 在第一象限,点 B 与原点 O 重合,点 C 在 x 轴的正半轴上.△ A 1 B 1 C 1 就是 ΔABC 经 γ ( 1 , 180 ° ) 变换后所得的图形.
若 ΔABC 经 γ ( 1 , 180 ° ) 变换后得△ A 1 B 1 C 1 ,△ A 1 B 1 C 1 经 γ ( 2 , 180 ° ) 变换后得△ A 2 B 2 C 2 ,△ A 2 B 2 C 2 经 γ ( 3 , 180 ° ) 变换后得△ A 3 B 3 C 3 ,依此类推 … …
△ A n − 1 B n − 1 C n − 1 经 γ ( n , 180 ° ) 变换后得△ A n B n C n ,则点 A 1 的坐标是 ,点 A 2018 的坐标是 .
分解因式: .
的倒数= .
在纸上剪下一个圆形和一个扇形纸片,使之恰好能够围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于120°(如图),则r与R之间的关系是
如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为 .
函数图象y=ax2+(a-3)x+1与x轴只有一个交点则a的值为