如图,BD是矩形ABCD的对角线.
(1)求作 ,使得 与 相切(要求:尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,设BD与 相切于点E, ,垂足为F.若直线CF与 相切于点G,求 的值.
在平面直角坐标系xOy中,已知点 ,N.
对于点P给出如下定义:将点P向右 或向左 平移 个单位长度,再向上 或向下 平移 个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.
(1)如图,点 ,点N在线段OM的延长线上.若点 ,点Q为点P的“对应点”.
①在图中画出点Q;
②连接PQ,交线段ON于点T,求证: ;
(2)⊙O的半径为 ,M是⊙O上一点,点N在线段OM上,且 ,若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).
如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系 ,规定一个单位长度代表1米.E 是抛物线的顶点.
(1)求此抛物线对应的函数表达式;
(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点 在x轴上,MN与矩形 的一边平行且相等.栅栏总长l为图中粗线段 MN长度之和,请解决以下问题:
(ⅰ)修建一个“”型栅栏,如图2,点 在抛物线AED上.设点P1的横坐标为 ,求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形 面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).
已知二次函数图象的顶点坐标为 ,且与x轴交于点 .
(1)求二次函数的表达式;
(2)如图,将二次函数图象绕x轴的正半轴上一点 旋转 ,此时点A、B的对应点分别为点C、D.
①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
如图,平行四边形ABCD中, , 动点E、F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为 秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
(2)如图2,设点E的速度为1个单位每秒,点F的速度为 个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
(3)如图3,H在线段AB上且 ,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使 ,并说明理由.
在平面直角坐标系 中,⊙ O 的半径为 1 , A , B 为⊙ O 外两点, .给出如下定义:平移线段 AB ,得到⊙ O 的弦 ( 分别为点 A , B 的对应点),线段 长度的最小值称为线段 AB 到⊙ O 的"平移距离".
( 1 )如图,平移线段 AB 到⊙ O 的长度为 1 的弦 和 ,则这两条弦的位置关系是 ;在点 中,连接点 A 与点 的线段的长度等于线段 AB 到⊙ O 的"平移距离";
( 2 )若点 A , B 都在直线 上,记线段 AB 到⊙ O 的"平移距离"为 ,求 的最小值;
( 3 )若点 A 的坐标为 ,记线段 AB 到⊙ O 的"平移距离"为 ,直接写出 的取值范围.
如图,在直角坐标系中,二次函数经过 , , 三个点.
( 1 )求该二次函数的解析式.
( 2 )若在该函数图象的对称轴上有个动点 ,求当 点坐标为何值时, 的周长最小.
如图,在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 ,且 ,点 是第三象限内抛物线上的一动点.
( 1 )求此抛物线的表达式;
( 2 )若 ,求点 的坐标;
( 3 )连接 ,求 面积的最大值及此时点 的坐标.
如图 ① ,直线 经过点 且平行于 y 轴,二次函数 的图象经过点 ,交直线 于点 N ,图象的顶点为 D ,它的对称轴与 x 轴交于点 C ,直线 DM 、 DN 分别与 x 轴相交于 A 、 B 两点.
( 1 )当 时,求点 N 的坐标及 的值;
( 2 )随着 a 的变化, 的值是否发生变化?请说明理由;
( 3 )如图 ② , E 是 x 轴上位于点 B 右侧的点, , DE 交抛物线于点 F .若 ,求此时的二次函数表达式.
如图,在平面直角坐标系中,矩形 的边 长是方程 的根,连接 , ,并过点 作 ,垂足为 ,动点 从点 以每秒 个单位长度的速度沿 方向匀速运动到点 为止;点 沿线段 以每秒 个单位长度的速度由点 向点 匀速运动,到点 为止,点 与点 同时出发,设运动时间为 秒
( 1 )线段 ______ ;
( 2 )连接 和 ,求 的面积 与运动时间 的函数关系式;
( 3 )在整个运动过程中,当 是以 为腰的等腰三角形时,直接写出点 的坐标.
发现规律:
( 1 )如图①, 与 都是等边三角形,直线 交于点 .直线 , 交于点 .求 的度数
( 2 )已知: 与 的位置如图②所示,直线 交于点 .直线 , 交于点 .若 , ,求 的度数
应用结论:
( 3 )如图③,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 , 为 轴上一动点,连接 .将线段 绕点 逆时针旋转 得到线段 ,连接 , ,求线段 长度的最小值
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为 , , 三种盲盒各一个,其中 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱; 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为 ; 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算, 盒的成本为145元, 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则 盒的成本为 元.
如图,在平面直角坐标系中,矩形 的顶点 , 在 轴的正半轴上,反比例函数 的图象经过顶点 ,分别与对角线 ,边 交于点 , ,连接 , .若点 为 的中点, 的面积为1,则 的值为
A. |
|
B. |
|
C. |
2 |
D. |
3 |