如图 ① ,直线 l 经过点 ( 4 , 0 ) 且平行于 y 轴,二次函数 y = a x 2 ﹣ 2 a x + c ( a 、 c 是常数 , a < 0 ) 的图象经过点 M ( ﹣ 1 , 1 ) ,交直线 l 于点 N ,图象的顶点为 D ,它的对称轴与 x 轴交于点 C ,直线 DM 、 DN 分别与 x 轴相交于 A 、 B 两点.
( 1 )当 a = ﹣ 1 时,求点 N 的坐标及 AC BC 的值;
( 2 )随着 a 的变化, AC BC 的值是否发生变化?请说明理由;
( 3 )如图 ② , E 是 x 轴上位于点 B 右侧的点, B C = 2 B E , DE 交抛物线于点 F .若 F B = F E ,求此时的二次函数表达式.
如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD. (1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.
已知抛物线y=x2-4x+3. (1)用配方法将y=x2-4x+3化成y=a(x-h)2+k的形式; (2)求出该抛物线的对称轴和顶点坐标; (3)直接写出当x满足什么条件时,函数y<0.
在△ABC中,∠A=30°,AB=2,将△ABC绕点B顺时针旋转(0°<<90°),得到△DBE,其中点A的对应点是点D,点C的对应点是点E,AC、DE相交于点F,连接BF. (1)如图1,若=60°,线段BA绕点B旋转得到线段BD.请补全△DBE,并直接写出∠AFB的度数; (2)如图2,若=90°,求∠AFB的度数和BF的长; (3)如图3,若旋转(0°<<90°),请直接写出∠AFB的度数及BF的长(用含的代数式表示).
对于点E和四边形ABCD,给出如下定义:在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,则称E为四边形ABCD边AB上的“相似点”;如果这三个三角形都相似,我们称E为四边形ABCD边AB上的“强相似点”. 如图1,在四边形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上, 点E是AB边上一点,∠DEC=45°,试判断点E是否是四边形ABCD边AB上的相似点,并证明你的结论正确; (2)如图2,在矩形ABCD中,AB=8,AD=3. ①在AB边上是否存在点E,使点E为四边形ABCD边AB上的“强相似点”.若存在,有几个?试在图2中画出所有强相似点; ②在①所画图形的基础上求AE的长.
在平面直角坐标系中,抛物线经过点(-1,a),(3,a),且最小值为-4 (1)求抛物线表达式及a的值; (2)设抛物线顶点C关于y轴的对称点为D,点P是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图像G(包含A,B两点).若直线DP与图像G有两个公共点,结合函数图像,求点P纵坐标t的取值范围.