如图,在平面直角坐标系中,矩形 ABCD 的边 AB 长是方程 x 2 - 3 x - 18 = 0 的根,连接 BD , ∠ DBC = 30 ° ,并过点 C 作 CN ⊥ BD ,垂足为 N ,动点 P 从点 B 以每秒 2 个单位长度的速度沿 BD 方向匀速运动到点 D 为止;点 M 沿线段 DA 以每秒 3 个单位长度的速度由点 D 向点 A 匀速运动,到点 A 为止,点 P 与点 M 同时出发,设运动时间为 t 秒 t > 0
( 1 )线段 CN = ______ ;
( 2 )连接 PM 和 MN ,求 Δ P M N 的面积 s 与运动时间 t 的函数关系式;
( 3 )在整个运动过程中,当 Δ P M N 是以 PN 为腰的等腰三角形时,直接写出点 P 的坐标.
计算:(每小题4分,共8分) (1) (2)
解下列方程:(每小题4分,共16分) (1) (2)3(x-5)2=2(5-x) (3)4(x+2)2-9(x-3)2=0 (4)(用配方法解)
试用图像法判断方程x2+2x=-的根的个数.
如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2="4," . (1)求抛物线的代数表达式; (2)设抛物线与y轴交于C点,求直线BC的表达式; (3)求△ABC的面积.
在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图像的一部分(如图),若这个男生出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为B(6,5). (1)求这个二次函数的表达式; (2)该男生把铅球推出去多远?(精确到0.01米).