如图,BD是矩形ABCD的对角线.
(1)求作 ⊙ A ,使得 ⊙ A 与 B D 相切(要求:尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,设BD与 ⊙ A 相切于点E, C F ⊥ B D ,垂足为F.若直线CF与 ⊙ A 相切于点G,求 tan ∠ A D B 的值.
已知:如图,在ABC中,∠B = 45°,∠C = 60°,AB = 6。求BC的长(结果保留根号)。
如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行,请你根据图中数 据计算回答:小敏身高1.78米,她乘电梯会有碰头危险吗? (可能用到的参考数值:sin27°=0.45,cos27°=0.89,tan27°=0.51)
如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式; (2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价的范围.
如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。(1)在如图的坐标系中求抛物线的解析式。(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?