发现规律:
( 1 )如图①, △ ABC 与 △ ADE 都是等边三角形,直线 BD , CE 交于点 F .直线 BD , AC 交于点 H .求 ∠ BFC 的度数
( 2 )已知: △ ABC 与 △ ADE 的位置如图②所示,直线 BD , CE 交于点 F .直线 BD , AC 交于点 H .若 ∠ ABC = ∠ ADE = α , ∠ ACB = ∠ AED = β ,求 ∠ BFC 的度数
应用结论:
( 3 )如图③,在平面直角坐标系中,点 O 的坐标为 ( 0 , 0 ) ,点 M 的坐标为 ( 3 , 0 ) , N 为 y 轴上一动点,连接 MN .将线段 MN 绕点 M 逆时针旋转 60 ∘ 得到线段 MK ,连接 NK , OK ,求线段 OK 长度的最小值
某商场销售一批名牌服装,平均每天可售出20件,每件盈利40元,为了增加盈利,商场决定采取适当的降价措施,经调查发现.如果每件服装每降低1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,问每件服装应降价多少元?
如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.求证:CD是⊙O的切线.
袋中有大小相同的红球和白球共5个,任意摸出一红球的概率是.求: (1)袋中红球、白球各有几个? (2)任意摸出两个球(不放回)均为红球的概率是多少?
如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点. (1)指出旋转中心,并求出旋转的度数; (2)求出∠BAE的度数和AE的长.
解下列方程:(1)x2﹣4x﹣7=0(2)(2x﹣1)2=(3﹣x)2.