阅读下列解题过程: ;。请回答下列问题:(1)观察上面的解题过程,请直接写出式子 ;(2)利用上面所提供的解法,请化简的值。
如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC中点,E为AB边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1; (1)求证:∠APE=∠CFP; (2)记△CPF的面积为S2,CF=x,y=. ①求y关于x的函数解析式和自变量的取值范围,并求y的最大值. ②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.
对于任意的实数x,记f(x)=. 例如:f(1)==,f(﹣2)== (1)计算f(2),f(-3)的值; (2)试猜想f(x)+f(﹣x)的值,并说明理由; (3)计算f(﹣2014)+f(﹣2013)+…+f(﹣1)+f(0)+f(1)+…+f(2013)+f(2014).
如图,游客从某旅游景区的景点A处下山至C处有两种路径,一中是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客同时从A处下山,甲沿AC匀速步行,速度为45m/min.乙开始从A乘缆车到B,在B处停留5min后,再从B匀速步行到C,两人同时到达.已知缆车匀速直线运动的速度为180m/min,山路AC长为2430m,经测量,∠CAB=45°,∠CBA=105°.(参考数据:1.4,1.7) (1)求索道AB的长; (2)为乙的步行速度.
如图,已知AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于点D. (1)证明:直线PB是⊙O的切线; (2)若BD=2PA,OA=3,PA=4,求BC的长.
今年植树节,安庆某中学组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).
(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的众数和中位数,并从描述数据集中趋势的量中选择一个恰当的量来估计该校1200名学生的植树数量.