已知二次函数图象的顶点坐标为 A ( 1 , 4 ) ,且与x轴交于点 B ( ﹣ 1 , 0 ) .
(1)求二次函数的表达式;
(2)如图,将二次函数图象绕x轴的正半轴上一点 P ( m , 0 ) 旋转 180 ° ,此时点A、B的对应点分别为点C、D.
①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=. (1)求这两个函数的解析式; (2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.
将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.要使这两个正方形的面积之和等于17cm2,那么这两个正方形的边长分别是多少?
已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE. (1)求证:△ABC是等腰三角形; (2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.
学校准备购买一批乒乓球桌.现有甲、乙两家商店卖价如下:甲商店:每张需要700元.乙商店:交1000元会员费后,每张需要600元.设学校需要乒乓球桌x张,在甲商店买和在乙商店买所需费用分别为y1、y2元. (1)分别写出y1、y2的函数解析式. (2)当学校添置多少张时,两种方案的费用相同? (3)若学校需要添置乒乓球桌20张,那么在那个商店买较省钱?说说你的理由.
某学校初二级甲、乙两班共有学生150人,他们的期末考试数学平均分为64.4分,若甲班学生平均分为72分,乙班学生平均分为57分,那么甲、乙两班各有学生多少人?