如图,二次函数y=ax2-2ax+的图象与x轴交于A、B二点,与y轴交于C点.抛物线的顶点为E(1,2),D为抛物线上一点,且CD∥x轴.(1)求此二次函数的关系式;(2)写出A、B、C、D四点的坐标;(3)若点F在抛物线的对称轴上,点G在抛物线上,且以A、B、F、G四点为顶点的四边形为平行四边形,求点G 的坐标.
如图,在三角形纸片ABC中,∠BAC为锐角,AB=12cm,AC=15cm.按下列步骤折叠:第一次,把∠B折叠使点B落在AC边上,折痕为AD,交BC于点D;第二次折叠,使点A与点D重合,折痕分别交AB、AC于点E、F,EF与AD交于点O,展开后,连结DE、DF.(1)试判断四边形AEDF的形状,并说明理由;(2)求AF的长.
已知:如图,点E是正方形ABCD中AD边上的一动点,连结BE,作∠BEG=∠BEA交CD于G,再以B为圆心作,连结BG.(1)求证:EG与相切(2)求∠EBG的度数;
.(1)解方程:x2﹣6x﹣5=0; (2)求不等式组,的整数解
.(1)计算:(π﹣2013)0﹣(﹣)-2+tan45°;(2)化简:.
在平面直角坐标系中,抛物线经过坐标原点O、点A(2,2)和点B(4,0)三个点,连接OA、OB.得到△OAB,点E在OA边上从点O向点A匀速运动(其中点E不与点A、O重合),同时点F以相同的速度在AB边上从点A向点B运动.(1)求出该抛物线的解析式.(2)若点C是线段OB的中点,连接CE、EF、FC,如图所示;①在点E运动的过程中,四边形AECF的面积是否会随着点E位置的改变而发生变化?如果变化请说明理由;如果不变,请求出四边形AECF的面积;②在点E运动的过程中,点A到线段EF的距离是否存在最大值,如果存在请求出最大距离;如果不存在,请说明理由.