高中数学

已知首项为 3 2 的等比数列 { a n } 不是递减数列,其前 n 项和为 S n ( n N + ) ,且 S 3 + a 3 , S 5 + a 5 , S 4 + a 4 成等差数列.
(1)求数列 { a n } 的通项公式;
(2)设 T n = S n - 1 S n ( n N + ) ,求数列 { T n } 的最大项的值与最小项的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,为常数且.

(1)证明:函数的图像关于直线对称;
(2)若满足,则称为函数的二阶周期点,如果有两个二阶周期点,试确定的取值范围;
(3)对于(2)中的,和,设为函数的最大值点,,记的面积为,讨论的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知椭圆的中心在坐标原点,长轴均为且在轴上,短轴长分别为,过原点且不与轴重合的直线l的四个交点按纵坐标从大到小依次为,记的面积分别为
(1)当直线轴重合时,若,求的值;
(2)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数定义在上,,导函数
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数() =,g ()=+
(1)求函数h ()=()-g ()的零点个数,并说明理由;
(2)设数列满足,证明:存在常数,使得对于任意的,都有≤ .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

(1)求的方程;
(2)设轴的交点为,过坐标原点的直线相交于点,直线分别与相交与.
①证明:
②记的面积分别是.问:是否存在直线,使得=?请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知在的展开式中,第5项的系数与第3项的系数之比是
(1)求展开式中的所有有理项;
(2)求展开式中系数绝对值最大的项;
(3)求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

是函数的两个极值点,其中.
(1)求的取值范围;
(2)若为自然对数的底数),求的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)
(1)求的解析式;
(2)设,求证:当时,且恒成立;
(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定正整数,若项数为的数列满足:对任意的,均有(其中),则称数列为“Γ数列”.
(1)判断数列是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:恒成立;
(3)设是公差为的无穷项等差数列,若对任意的正整数
均构成“Γ数列”,求的公差

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题