高中数学

如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)求在点(1,0)处的切线方程;
(2)判断在区间上的单调性;
(3)证明:上恒成立.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中为自然对数的底数.
(1)若处的切线与直线垂直,求的值;
(2)求上的最小值;
(3)试探究能否存在区间,使得在区间上具有相同的单调性?若能存在,说明区间的特点,并指出在区间上的单调性;若不能存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为的面积为,令,求的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列满足
(1)求证:数列是等差数列,并求数列的通项公式;
(2)设数列满足,对于任意给定的正整数,是否存在正整数(),使得成等差数列?若存在,试用表示;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆
(1)求椭圆及圆的方程;
(2)若点是圆劣弧上一动点(点异于端点),直线分别交线段,椭圆于点,直线交于点
(ⅰ)求的最大值;
(ⅱ)试问:两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,且.求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最小值;
(3)记函数图象为曲线,设点是曲线上不同的两点,点为线段的中点,过点轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆
(1)求椭圆及圆的方程;
(2)若点是圆劣弧上一动点(点异于端点),直线分别交线段,椭圆于点,直线交于点
(ⅰ)求的最大值;
(ⅱ)试问:..,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

各项均为正数的数列{an}中,设,且
(1)设,证明数列{bn}是等比数列;
(2)设,求集合

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

各项均为正数的数列对一切均满足.证明:
(1)
(2)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;
若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数其中a是实数.设为该函数图象上的两点,且
(1)指出函数f(x)的单调区间;
(2)若函数f(x)的图象在点A,B处的切线互相垂直,且,求的最小值;
(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)讨论f(x)在区间(0,1)上的单调性;
(2)当a∈[3,+∞)时,曲线上总存在相异的两点,使得曲线在点P,Q处的切线互相平行,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若直线的反函数的图象相切,求实数k的值;
(2)设,讨论曲线与曲线公共点的个数;
(3)设,比较的大小,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题