已知数列的前三项分别为,,,(其中为正常数)。设。
(1)归纳出数列的通项公式,并证明数列不可能为等比数列;
(2)若=1,求的值;
(3)若=4,试证明:当时,.
已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若对任意不等式恒成立,求实数a的取值范围:
(3)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于,两点.
(ⅰ)若直线垂直于轴,求的大小;
(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
已知数列{an}的前n项和Sn=-an-n-1+2(n∈N*),数列{bn}满足bn=2nan.
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.
(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn>.
(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn.
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.
(1)求数列{an},{bn}的通项公式.
(2)求数列{an·bn}的前n项和Dn.
(3)设cn=an·sin2-bn·cos2(n∈N*),求数列{cn}的前2n项和T2n.
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中为的导函数.证明:对任意.
已知等差数列的公差大于零,且是方程的两个根;各项均为正数的等比数列的前项和为,且满足,
(1)求数列、的通项公式;
(2)若数列满足,求数列的前n项和.
已知椭圆过点,且离心率.
(1)求椭圆C的方程;
(2)已知过点的直线与该椭圆相交于A、B两点,试问:在直线上是否存在点P,使得是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.
已知,其中e为自然对数的底数.
(1)若是增函数,求实数的取值范围;
(2)当时,求函数上的最小值;
(3)求证:.
如图,在三棱锥中,平面平面,于点,且,,
(1)求证:
(2)
(3)若,,求三棱锥的体积.
如图,直四棱柱中,,,,,,为上一点,,
(1)证明:平面;
(2)求点到平面的距离。
如图,点(0,﹣1)是椭圆:的一个顶点,的长轴是圆:的直径,,是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点.
(1)求椭圆的方程;
(2)求面积的最大值时直线的方程.
已知函数
.
(1)求函数
的单调区间;
(2)证明:对任意的
,存在唯一的
,使
.
(3)设(2)中所确定的
关于
的函数为
,证明:当
时,有
.