已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.(1)求椭圆的标准方程;(2)已知过点的直线与椭圆交于,两点.(ⅰ)若直线垂直于轴,求的大小;(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
如图,四棱锥中,底面是正方形,侧棱底面是的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.
过原点作圆的弦,求弦中点的轨迹方程.
求经过原点,且过两点的圆的方程.
求经过两条直线和的交点,且与直线平行的直线方程;
如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上。(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.