如图,从边长为2a的正方形铁皮的四个角各截去一个边长为x的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度x与底面正方形的边长的比不超过常数t,问:x取何值时,长方体的容积V有最大值?
设数列满足 (I)求数列的通项; (II)设求数列的前项和.
已知数列计算由此推算的公式,并用数学归纳法给出证明。
双曲线的方程是-y2=1. (1)直线l的倾斜角为,被双曲线截得的弦长为,求直线l的方程; (2)过点P(3,1)作直线l′,使其截得的弦恰被P点平分,求直线l′的方程.
双曲线的中心在坐标原点,焦点F(2,0)到一条渐近线的距离为1,试求过F所作一渐近线的垂线l被双曲线截得的线段长.
如图,OA是双曲线的实半轴,OB是虚半轴,F为焦点,且∠FAB=150°,S△ABF=(6-3),求该双曲线的方程.