已知数列的前三项分别为,,,(其中为正常数)。设。(1)归纳出数列的通项公式,并证明数列不可能为等比数列;(2)若=1,求的值;(3)若=4,试证明:当时,.
(本小题满分14分)已知椭圆:与抛物线:有相同焦点. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知直线过椭圆的另一焦点,且与抛物线相切于第一象限的点,设平行的直线交椭圆于两点,当△面积最大时,求直线的方程.
(本小题满分13分)已知函数() (Ⅰ)求函数的单调区间; (Ⅱ)当时,求在上的最大值和最小值(); (Ⅲ)求证:.
(本小题满分12分)已知各项均为正数的数列的前项和为,且.在数列中,,. (Ⅰ)求,; (Ⅱ)设求数列的前项和.
(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求: (Ⅰ)至少有1人面试合格的概率; (Ⅱ)签约人数的分布列和数学期望.
(本小题满分12分)如图,已知四边形ABCD为正方形,平面,∥,且 (1)求证:平面; (2)求二面角的余弦值.