已知数列的前三项分别为,,,(其中为正常数)。设。(1)归纳出数列的通项公式,并证明数列不可能为等比数列;(2)若=1,求的值;(3)若=4,试证明:当时,.
已知椭圆E:的焦点坐标为(),点M(,)在椭圆E上. (Ⅰ)求椭圆E的方程; (Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;
已知圆,直线. (Ⅰ)若与相切,求的值; (Ⅱ)是否存在值,使得与相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.
已知直线和的相交于点P。 求:(Ⅰ)过点P且平行于直线的直线方程; (Ⅱ)过点P且垂直于直线的直线方程。
【(本小题满分12分) 已知函数,. (1)解关于的不等式(); (2)若函数的图象恒在函数图象的上方,求的取值范围.
(本小题满分12分) 已知函数 (1)若函数处有极值10,求b的值; (2)若对任意上单调递增,求b的取值范围。