已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.(1)求a、b的值及函数f(x)的解析式;(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.
(本小题满分12分)在平面直角坐标系xoy中,已知抛物线C:x上横坐标为4的点到该抛物线的焦点的距离为5。 (1)求抛物线C的标准方程; (2)过点M(1,0)作直线交抛物线C于A、B两点,求证:+恒为定值。
(12分) 已知在正方体ABCD —A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG =. (1)求证:EF⊥B1C; (2)求EF与G C1所成角的余弦值;
(本小题满分12分) 给定两个命题, :对任意实数都有恒成立;:关于的方程有实数根.如果∨为真命题,∧为假命题,求实数的取值范围.
已知直线与椭圆相交于、两点,是线段上的一点,,且点M在直线上 (1)求椭圆的离心率; (2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程。
某商品每件成本9元,售价30元,每星期卖出432件。如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比。已知商品单价降低2元时,一个星期多卖出24件。 (1)将一个星期的商品销售利润表示成的函数; (2)如何定价才能使一个星期的商品销售利润最大?