某厂为适应市场需求,提高效益,特投入98万元引进先进设备,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元。请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出,哪种方案较为合算?请说明理由.
数列的前项和记为,且满足. (1)求数列的通项公式; (2)求和; (3)设有项的数列是连续的正整数数列,并且满足:. 问数列最多有几项?并求这些项的和.
已知圆. (1)直线:与圆相交于、两点,求; (2)如图,设、是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线、与轴分别交于和,问是否为定值?若是求出该定值;若不是,请说明理由.
已知函数. (1)求函数的最小正周期,最大值及取最大值时相应的值; (2)如果,求的取值范围.
在正四棱锥中,侧棱的长为,与所成的角的大小等于. (1)求正四棱锥的体积; (2)若正四棱锥的五个顶点都在球的表面上,求此球的半径.
设函数定义域为,且. 设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为. (1)写出的单调递减区间(不必证明); (2)设点的横坐标,求点的坐标(用的代数式表示); (3)设为坐标原点,求四边形面积的最小值.