高中数学

已知函数.
(1)求函数的最小值;
(2)若,证明:当时,.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)若当时,函数的最大值为,求的值;
(2)设为函数的导函数),若函数上是单调函数,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点及抛物线与轴两个交点的圆的方程;
(3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意恒成立.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆C:( )的离心率为,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦.
(1)求抛物线的准线方程和焦点坐标;
(2)若,求证:直线恒过定点;
(3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

数列的首项,
求数列的通项公式;
的前项和为,若的最小值为,求的取值范围?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意都成立,那么,这样的数列我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆过点,两焦点为是坐标原点,不经过原点的直线与椭圆交于两不同点.
(1)求椭圆C的方程;       
(2) 当时,求面积的最大值;
(3) 若直线的斜率依次成等比数列,求直线的斜率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

本题共有2个小题,第1小题满分6分,第2个小题满分8分。
已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试证函数内存在零点.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列满足:,其中为实数,为正整数.
(1)对任意实数,求证:不成等比数列;
(2)试判断数列是否为等比数列,并证明你的结论.
(3)设为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

阅读:
已知,求的最小值.
解法如下:
当且仅当,即时取到等号,
的最小值为.
应用上述解法,求解下列问题:
(1)已知,求的最小值;
(2)已知,求函数的最小值;
(3)已知正数
求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列的通项公式分别为.将中的公共项按照从小到大的顺序排列构成一个新数列记为.
(1)试写出的值,并由此归纳数列的通项公式; 
(2)证明你在(1)所猜想的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题