高中数学

已知函数, 数列满足
(1)求数列的通项公式;
(2)令,若对一切成立,求最小正整数m.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中且m为常数.
(1)试判断当时函数在区间上的单调性,并证明;
(2)设函数处取得极值,求的值,并讨论函数的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设数列的前项和为,
已知,,,是数列的前项和.
(1)求数列的通项公式;(2)求;
(3)求满足的最大正整数的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)若方程有3个不同的根,求实数的取值范围;
(2)在(1)的条件下,是否存在实数,使得上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,曲线经过点
且在点处的切线为.
(1)求的值;
(2)若存在实数,使得时,恒成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知是函数的两个零点,其中常数,设
(Ⅰ)用表示
(Ⅱ)求证:
(Ⅲ)求证:对任意的

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且
(1)求点的轨迹的方程;
(2) 若直线斜率为1且过点,其与轨迹交于点,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数,求证:直线l过定点,并求该定点的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

 给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数
①求的表达式;
②当时,求函数的图像与函数的图像的交点坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数的单调区间;
(2)若函数的图像与直线恰有两个交点,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设集合为函数的定义域,集合为函数的值域,集合为不等式的解集.
(1)求
(2)若,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题