已知椭圆左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.(1)求椭圆C的方程;(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数,求证:直线l过定点,并求该定点的坐标.
(10分)已知函数,且.(I)求的值;(II)求函数在[1,3]上的最小值和最大值.
椭圆G:的两个焦点、,M是椭圆上一点,且满足. (1)求离心率的取值范围;(2)当离心率取得最小值时,点到椭圆上的点的最远距离为;①求此时椭圆G的方程;②设斜率为()的直线与椭圆G相交于不同的两点A、B,Q为AB的中点,问:A、B两点能否关于过点、Q的直线对称?若能,求出的取值范围;若不能,请说明理由.
已知函数,(为常数,为自然对数的底).(1)令,,求和;(2)若函数在时取得极小值,试确定的取值范围;[理](3)在(2)的条件下,设由的极大值构成的函数为,试判断曲线只可能与直线、(,为确定的常数)中的哪一条相切,并说明理由.
[文]若数列的通项公式,记.(1)计算,,的值;(2)由(1)推测的表达式;(3)证明(2)中你的结论.
[理]如图,在正方体中,是棱的中点,为平面内一点,.(1)证明平面;(2)求与平面所成的角;(3)若正方体的棱长为,求三棱锥的体积.