【原创】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
设:实数满足,其中,实数满足 (1)若,且p∧q为真,求实数的取值范围. (2)﹁p是﹁q的充分不必要条件,求实数的取值范围.
设函数. (1)当时,求函数的单调区间; (2)在(1)的条件下,设函数,若对于,,使成立,求实数的取值范围.
已知数列的前n项的和为,且, (1)证明数列是等比数列 (2)求通项公式及前n项的和; (3)设若集合M=恰有4个元素,求实数的取值范围.
已知函数在与时都取得极值. (1)求的值; (2)若对,不等式恒成立,求的取值范围.
已知数列是公差不为0的等差数列,,且,,成等比数列. (1)求数列{an}的通项公式; (2)设,求数列的前项和.