(本小题满分13分)
已知函数为自然对数的底数)
(1)求的单调区间,若有最值,请求出最值;
(2)是否存在正常数,使的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出的值,以及公共点坐标和公切线方程;若不存在,请说明理由。
已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。
(1)求椭圆E的方程;
(2)求k的取值范围;
(3)求的取值范围。
(本小题满分13分)
在数列。
(1)求证:数列是等差数列,并求数列的通项公式;
(2)设,求数列的前项和。
在如图所示的空间几何体中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。
(1)求证:DE//平面ABC;
(2)求二面角E—BC—A的余弦;
(3)求多面体ABCDE的体积。
甲乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码,设随机变量
(1)求的概率;
(2)求随机变量X的分布列及数学期望。
(本小题满分12分)
在,角A,B,C的对边分别为。
(1)判断的形状;
(2)若的值。
(满分12分)已知为偶函数,曲线过点,且.
(Ⅰ)若曲线有斜率为0的切线,求实数的取值范围
(Ⅱ)若当时函数取得极大值,且方程有三个不同的实数解,求实数的取值范围.
(满分12分)函数的定义域为,且满足对于任意的实数,有.
(Ⅰ)求的值; (Ⅱ)判断的奇偶性并证明;
(III)若,且在上是增函数,解关于的不等式.
某高级中学共有学生2000名,各年级男、女生人数如下表:
|
高一年级 |
高二年级 |
高三年级 |
女生 |
373 |
x |
y |
男生 |
377 |
370 |
z |
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(Ⅰ)求x的值;
(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
本题有(1)、(2)、(3)三个选考题,每题7份,请考生任选2题作答,满分14分.
如果多做,则按所做的前两题计分.
选修4系列(本小题满分14分)
(1)(本小题满分7分)选修4-2:矩阵与变换
设是把坐标平面上的点的横坐标伸长到倍,纵坐标伸长到倍的伸压变换.
(Ⅰ)求矩阵的特征值及相应的特征向量;
(Ⅱ)求逆矩阵以及椭圆在的作用下的新曲线的方程.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长
(3)(本小题满分7分)选修4—5:不等式选讲
已知,且、、是正数,求证:.
(本小题满分14分)
已知函数
(1)求f(x)在[0,1]上的极值;
(2)若对任意成立,求实数a的取值范围;
(3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.