在如图所示的空间几何体中,平面平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在的平分线上。(1)求证:DE//平面ABC;(2)求二面角E—BC—A的余弦;(3)求多面体ABCDE的体积。
已知数列的前项和为,.(1)求数列的通项公式;(2)设log2an+1 ,求数列的前项和。
在平面直角坐标系中,若,且.(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.
如图,椭圆经过点,离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.
已知中心在原点的双曲线的右焦点为,实轴长.(1)求双曲线的方程(2)若直线与双曲线恒有两个不同的交点,且为锐角(其中为原点),求的取值范围.
是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.