高中数学

(本小题满分12分)
已知函数为实数)有极值,且在处的切线与直线平行.
(I)求实数a的取值范围;
(II)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存
在,请说明理由;
(Ⅲ)设
求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数为奇函数,函数在区间上单调递减,在上单调递增.
(I)求实数的值;
(II)求的值及的解析式;
(Ⅲ)设,试证:对任意的都有
.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)
设函数
(I)求的最小值
(II)若时恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,且
(1)求函数的表达式;
(2)若数列的项满足,试求
(3)猜想数列的通项,并用数学归纳法证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知曲线上一点P(1,2),用导数的定义求在点P处的切线的斜率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)  
已知函数.
(Ⅰ)若,求曲线处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)
已知曲线y=在x=x0处的切线L经过点P(2,),求切线L的方程。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数f(x)=a-x-lnx(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,证明:(x-1)(lnx-f(x))≥0.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分)已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
(Ⅱ)当时,求上的最大值和最小值;
(Ⅲ)当时,求证:对大于的任意正整数,都有 。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

((本小题满分12分)
已知x>,函数f(x)=,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题12分)
若直线分抛物线轴所围成图形为面积相等的两部分,求的值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数
(I)若,求函数的极值;
(II)若对任意的,都有成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,设曲线在点处的切线为,若与圆相切,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题