(本小题满分10分)已知曲线y=在x=x0处的切线L经过点P(2,),求切线L的方程。
(本小题满分14分)已知函数(). (Ⅰ)当时,求函数图象在点处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)若,,且对任意的,,恒成立,求实数的取值范围.
(本小题满分13分)已知椭圆()的右焦点,过点且与坐标轴不垂直的直线与椭圆交于,两点,当直线经过椭圆的一个顶点时其倾斜角恰好为. (Ⅰ)求椭圆的方程; (Ⅱ)设为坐标原点,线段上是否存在点,使得?若存在,求出实数的取值范围;若不存在,说明理由.
(本小题满分12分)如图,在四棱锥中,,,,,平面平面. (Ⅰ)求证:平面平面; (Ⅱ)若直线与平面所成的角的正弦值为,求二面角的余弦值.
(本小题满分12分)已知等差数列中,,前项和为且满足条件:(). (Ⅰ)求数列的通项公式; (Ⅱ)若数列的前项和为,且有(),,证明:数列是等比数列;又,求数列的前项和.
(本小题满分12分)为了进一步激发同学们的学习热情,某班级建立了理科、文科两个学习兴趣小组,两组的人数如下表所示.现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取名同学进行测试. (Ⅰ)求从理科组抽取的同学中至少有名女同学的概率; (Ⅱ)记为抽取的名同学中男同学的人数,求随机变量的分布列和数学期望.