设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?(2)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?
已知在区间上是增函数. (1)求实数的值组成的集合; (2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及恒成立?若存在,求的取值范围;若不存在,请说明理由.
已知椭圆,、是其左右焦点,离心率为,且经过点. (1)求椭圆的标准方程; (2)若、分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围; (3)若为椭圆上动点,求的最小值.
数列的前项和记为,,. (1)求数列的通项公式; (2)等差数列的前项和有最大值,且,又、、成等比数列,求.
如图,四棱锥的底面是正方形,底面,,,点、分别为棱、的中点. (1)求证:平面; (2)求证:平面平面; (3)求三棱锥的体积.
设关于的一元二次方程. (1)若是从、、、四个数中任取的一个数,是从、、三个数中任取的一个数,求上述方程有实根的概率; (2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.