(本小题满分12分) 已知函数,为实数)有极值,且在处的切线与直线平行.(I)求实数a的取值范围;(II)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;(Ⅲ)设求证:.
甲乙两人进行乒乓球比赛,各局相互独立,约定每局胜者得1分,负者得0分,如果两人比赛五局,乙得1分与得2分的概率恰好相等. 求乙在每局中获胜的概率为多少? 假设比赛进行到有一人比对方多2分或打满6局时停止,用表示比赛停止时已打局数,求的期望.
已知函数且,求函数的单调区间.
设函数,的图象关于直线对称,求值.
已知函数(为实常数). (1)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围; (2)设,若不等式在有解,求的取值范围.
如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点, (1)求椭圆的方程; (2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.