(本小题满分12分) 已知函数,为实数)有极值,且在处的切线与直线平行.(I)求实数a的取值范围;(II)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;(Ⅲ)设求证:.
解不等式
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为(为对数),求曲线截直线所得的弦长.
已知矩阵对应的线性变换把点变成点,求矩阵的特征值以及属于没个特征值的一个特征向量.
已知函数 (为实常数)。(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在区间上无极值,求的取值范围;(Ⅲ)已知且,求证: .
已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且(1)求椭圆的方程;(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.