(本小题满分12分)某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔相互独立。根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为0.5、0.6、0.4,第二次选拔,甲、乙、丙三人合格的概率依次为0.6、0.5、0.5。(I)求第一次选拔后甲、乙两人中只有甲合格,而乙不合格的概率;(II)分别求出甲、乙、丙三人经过前后两次选拔后合格入选的概率;(III)设经过前后两次选拔后合格入选的人数为,求
(本小题6分)已知直线l在两坐标轴上的截距相等,且点到直线的距离为,求直线的方程.
(本小题10分). 如图,设椭圆(a>b>0)的右焦点为F(1,0),A为椭圆的上顶点,椭圆上的点到右焦点的最短距离为-1.过F作椭圆的弦PQ,直线AP,AQ分别交直线于点M,N. (Ⅰ) 求椭圆的方程; (Ⅱ) 求当三角形AMN面积最小时直线PQ的方程.
(本小题9分). 如图所示,⊥平面,,,为中点. (1)证明:; (2)若与平面所成角的正切值为,求二面角--的正弦值.
(本小题8分). 已知圆: 和圆外一点(1, ), (1)若直线经过原点,且圆上恰有三个点到直线的距离为,求直线的方程; (2)若经过的直线与圆相切,切点分别为,求切线的方程及两切点所在的直线方程.
(本小题7分).如图,在四棱锥中,底面是正方形,侧棱,,是的中点,交于点. (1)证明//平面; (2)证明⊥平面; (3)求.