设定义在(0,+∞)上的函数f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.
已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)
(1)设,求证:当时,;
(2)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实
数a的值;如果不存在,请说明理
已知曲线y=x3+1,求过点P(1,2)的曲线的切线方程.
已知 a为实数,=
(1)求导函数
(2)若 , 求 在 [-2, 2] 上的最大值和最小值;
(3)若 在 (-∞, -2]和 [2, +∞) 上都是递增的, 求的取值范围.
已知曲线 y = x3 + x-2 在点 P0 处的切线 平行于直线
4x-y-1=0,且点 P0 在第三象限,
⑴求P0的坐标;
⑵若直线 , 且 l 也过切点P0 ,求直线l的方程.
设
,曲线
与直线
在
点相切.
(Ⅰ)求
的值。
(Ⅱ)证明:当
时,
.
已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线和是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.