已知函数 f ( x ) = ln x + k e x ( k 为常数, e = 2 . 71828 . . . 是自然对数的底数),曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线与 x 轴平行. (Ⅰ)求 k 的值; (Ⅱ)求 f ( x ) 的单调区间; (Ⅲ)设 g ( x ) = ( x 2 + x ) f ` ( x ) ,其中 f ` ( x ) 为 f ( x ) 的导函数.证明:对任意 x > 0 , g ( x ) < 1 + e - 2 .
已知抛物线C:的焦点为F,直线交抛物线于、两点,是线段的中点,过作轴的垂线交抛物线于点. (1)若直线AB过焦点F,求的值; (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由.
如图,在三棱锥中,△PAB和△CAB都是以AB为斜边的等腰直角三角形, 若,D是PC的中点 (1)证明:; (2)求AD与平面ABC所成角的正弦值.
已知数列满足,若为等比数列,且. (1)求; (2)设,求数列的前n项和.
在△ABC中,角所对的边分别为a,b,c, (1)求角A; (2)若2sinC="3sinB," △ABC的面积,求a.
各项为正的数列满足,, (1)取,求证:数列是等比数列,并求其公比; (2)取时令,记数列的前项和为,数列的前项之积为,求证:对任 意正整数,为定值.