已知函数 f ( x ) = ln x + k e x ( k 为常数, e = 2 . 71828 . . . 是自然对数的底数),曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线与 x 轴平行. (Ⅰ)求 k 的值; (Ⅱ)求 f ( x ) 的单调区间; (Ⅲ)设 g ( x ) = ( x 2 + x ) f ` ( x ) ,其中 f ` ( x ) 为 f ( x ) 的导函数.证明:对任意 x > 0 , g ( x ) < 1 + e - 2 .
有三张正面分别写有数字—2,—1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值。放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y)。(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式有意义的(x,y)出现的概率;(3)化简分式;并求使分式的值为整数的(x,y)出现的概率。
已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM ≌△CFN;(2)求证:四边形BMDN是平行四边形.
计算:.
已知.(1) 求函数在上的最小值;(2) 对一切,恒成立,求实数a的取值范围;(3) 证明:对一切,都有成立.
设函数(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当≥0时f(x)≥0,求a的取值范围。