某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=x3+x2+2x.
(1)求在第1s内的平均速度;
(2)求在1s末的瞬时速度;
(3)经过多少时间该物体的运动速度达到14m/s?
设定义在(0,+∞)上的函数f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.
已知曲线y=x3+1,求过点P(1,2)的曲线的切线方程.
已知曲线 y = x3 + x-2 在点 P0 处的切线 平行于直线
4x-y-1=0,且点 P0 在第三象限,
⑴求P0的坐标;
⑵若直线 , 且 l 也过切点P0 ,求直线l的方程.