已知曲线y=x3+1,求过点P(1,2)的曲线的切线方程.
已知函数.
(1)求的导数;
(2)求在闭区间上的最大值与最小值.
已知 a为实数,=
(1)求导函数
(2)若 , 求 在 [-2, 2] 上的最大值和最小值;
(3)若 在 (-∞, -2]和 [2, +∞) 上都是递增的, 求的取值范围.
(本小题满分12分)
已知函数为奇函数,函数在区间上单调递减,在上单调递增.
(I)求实数的值;
(II)求的值及的解析式;
(Ⅲ)设,试证:对任意的且都有
.
已知曲线 y = x3 + x-2 在点 P0 处的切线 平行于直线
4x-y-1=0,且点 P0 在第三象限,
⑴求P0的坐标;
⑵若直线 , 且 l 也过切点P0 ,求直线l的方程.
设
,曲线
与直线
在
点相切.
(Ⅰ)求
的值。
(Ⅱ)证明:当
时,
.
已知函数
(
为常数,
是自然对数的底数),曲线
在点
处的切线与
轴平行.
(Ⅰ)求
的值;
(Ⅱ)求
的单调区间;
(Ⅲ)设
,其中
为
的导函数.证明:对任意
.
已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线和是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.